Biotinylated non-ionic amphipols for GPCR Ligands Screening.

2020 
Abstract We present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)8-alkyne that resulted in formation of the biotinylated polymers. The designed structure of BNAPols was confirmed by NMR spectroscopy, and a HABA/avidin assay was used for estimating the percentage of biotin grafted on the polymer end chain. The colloidal characterization of these biotin-functionalized polymers was done using both dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. These BNAPols were used to stabilize a model G protein-coupled receptor (GPCR), the human Growth Hormone Secretagogue Receptor (GHSR), out of its membrane environment. Subsequent immobilization of the BNAPols:GHSR complex onto a streptavidin-coated surface allowed screening of ligands based both on their ability to bind the immobilized receptor and to trigger GHSR conformational changes using the fluorescence energy transfer (FRET)-based assay. This opens the way to the use of biotinylated NAPols to immobilize functional, unmodified, membrane proteins, providing original sensor devices for multiple applications including innovative ligand screening assays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []