In situ mapping of chemical segregation using synchrotron x-ray imaging

2020 
Synchrotron x-rays are a powerful tool to probe real-time changes in the microstructure of materials as they respond to an external stimulus, such as phase transformations that take place in response to a change in temperature. X-ray imaging techniques include radiography and tomography, and have been steadily improved over the last decades so that they can now resolve micrometer-scale or even finer structural changes in bulk specimens over time scales of a second or less. Under certain conditions, these imaging approaches can also give spatially resolved chemical information. In this article, we focus on the liquid to solid transformation of metallic alloys and the temporal and spatial resolution of the accompanying segregation of alloying elements. The solidification of alloys provides an excellent case study for x-ray imaging because it is usually accompanied by the progressive, preferential segregation of one or more of the alloying elements to either the solid or the liquid, and gives rise to surprisingly complex chemical segregation patterns. We describe chemical mapping investigations of binary and quasi-binary alloys using radiography and tomography, and recent developments in x-ray fluorescence imaging that offer the prospect of a more general, multielement mapping technique. Future developments for synchrotron-based chemical mapping are also considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []