Physical exercise-induced thermoregulatory responses in trained rats: Effects of manipulating the duration and intensity of aerobic training sessions
2021
Abstract This study investigated the effects of increasing the intensity and/or duration of aerobic training sessions on thermoregulatory responses in rats subjected to exercises in temperate and warm environments. Thirty-two adult male Wistar rats were divided into four groups: a control (CON) group and three groups that were subjected to an 8-week aerobic training, during which the physical overload was achieved by predominantly increasing the exercise intensity (INT), duration (DUR) or by increasing both in an alternate manner (ID). During the last week of training, the rats received an abdominal sensor implant to measure their core body temperature (TCORE) by telemetry. After the training protocol, the 32 rats were subjected to incremental speed-exercises in a temperate (23 °C) or warm environment (32 °C). The rats had their TCORE recorded while running on a treadmill, and the ratio between the increase in TCORE and distance traveled was calculated to estimate thermoregulatory efficiency. All training protocols increased the rats’ thermoregulatory efficiency during the incremental-speed exercise at 23 °C; i.e., trained rats attained faster running speeds but unchanged TCORE at fatigue compared to CON rats. However, none of the load components of training sessions – intensity or duration – was more effective than the other in improving this efficiency. At 32 °C, the aerobic training protocols did not influence the exercise-induced thermoregulatory responses. Our data indicate that different progressions in aerobic training performed at temperate conditions improved thermoregulatory efficiency during incremental exercise in the same environment; this training-induced adaptation was not clearly observed when running at warmer conditions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
0
Citations
NaN
KQI