Exploration and analysis of the factors influencing GNSS PWV for nowcasting applications
2021
Abstract Precipitable water vapor (PWV) can be assimilated into a numerical weather model (NWM) to improve the prediction accuracy of numerical weather prediction. In this study, taking GNSS data for the Beijing Fangshan station (BJFS) as an example, based on the method of Pearson correlation coefficient combined with quantitative analysis, GNSS datasets are used to study the relationships between GNSS-derived PWV (GNSS PWV_Met) and its influencing factors, including the internal influencing factors zenith troposphere delay (ZTD), zenith hydrostatic delay (ZHD), zenith wet delay (ZWD), and surface temperature (Ts), and the external influencing factor haze (mainly PM2.5). Firstly, based on the strong correlation between PWV_Met and ZTD hourly sequences from the International GNSS Service Network’s BJFS station for DOYS 182-212, 2015, the results of experiment prove that the reliability of GNSS ZTD is used to forecast PWV_Met in short-term forecasting. Secondly, based on hourly data of BJFS in 2016, the correlation between PWV_Met and ZTD, ZWD, ZHD, pressure (P) and Ts is analyzed, and then, with the rate of ZTD variation as the main factor, ZTD variation as auxiliary factor, the prediction success rate is 88.24% from hourly data of precipitation event for DOYs 183-213 in Beijing. The experiment indicates that ZTD can help forecast short-term precipitation. Thirdly, based on data from three hazy periods with relatively stable weather conditions, no heavy rainfall, and relatively continuous data in the past three years, the correlation between GNSS PWV_Met/ZTD and PM2.5 hourly series is analyzed. The results of the experiments suggests that GNSS ZTD should be considered to assist in haze monitoring. So in the absence of radiosonde stations and meteorological elements, ZTDs on retrieval of GNSS stations have more application value in short-term forecast.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
61
References
1
Citations
NaN
KQI