Structural Analysis of LP-CM Facing Heat Flux in Tokamak and Evaluation of Stress Field and Displacement Field

2012 
Langmuir Probes attached to plasma-facing components in a Tokamak are used to diagnose high-temperature plasma during fusion experiments. In this work, a finite element model of Langmuir Probe-Cooling Monoblock (LP-CM) is established, and structural analysis of the LP-CM is carried out. The maximum von Mises stress during the 400 s incident heat flux has been given in detail, and the relationship between the sliding friction coefficient and thermal stress has been investigated systematically. A contact design is employed between Langmuir Probe and Cooling Monoblock, which is an effective method to lower the thermal stress. The thermal stress reaches the peak on the edge of the aluminium oxide ceramic interlayer. The damaged displacement field of the LP-CM has been examined fully, and the maximum global displacement is 0.444 mm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []