The Chemical Problem of Energy Change: Multi-Electron Processes
2012
This special issue is focussed on arguably the most important fundamental question in contemporary chemical research: how to efficiently and economically convert abundant and thermodynamically stable molecules, such as H2O, CO2, and N2 into useable fuel and food sources. The 3 billion year evolutionary experiment of nature has provided a blueprint for the answer: multi-electron catalysis. However, unlike one-electron transfer, we have no refined theories for multi-electron processes. This is despite its centrality to much of chemistry, particularly in catalysis and biology. In this article we highlight recent research developments relevant to this theme with emphasis on the key physical concepts and premises: (i) multi-electron processes as stepwise single-electron transfer events; (ii) proton-coupled electron transfer; (iii) stimulated, concerted, and co-operative phenomena; (iv) feedback mechanisms that may enhance electron transfer rates by minimizing activation barriers; and (v) non-linearity and far-from-equilibrium considerations. The aim of our discussion is to provide inspiration for new directions in chemical research, in the context of an urgent contemporary issue.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
5
Citations
NaN
KQI