Experimental measurement of the \self-healing" of the spatially inhomogeneous states of polarization of radially and azimuthally polarized vector Bessel beams

2014 
We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of radial and azimuthal polarized vector Bessel beams. Radial and azimuthal polarized vector Bessel beams were generated via a digital version of Durnin’s method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, the spatially inhomogeneous states of polarization of a radial and azimuthal polarized vector Bessel beams self-heal. Similar to scalar Bessel beams, the self-healing of vector Bessel beams can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction. The self-healing of vector Bessel beams may have applications in, for example, optical trapping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []