The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient

2017 
The benefits and detriments of recombination for adaptive evolution have been studied both theoretically and experimentally, with conflicting predictions and observations. Most pertinent experiments examine recombination's effects in an unchanging environment and do not study its genome-wide effects. Here we evolved six replicate populations of either highly recombining R+ or lowly recombining R– E. coli strains in a changing environment, by introducing the novel nutrients L-arabinose or indole into the environment. The experiment's ancestral strains are not viable on these nutrients, but 130 generations of adaptive evolution were sufficient to render themviable. Recombination conferred a more pronounced advantage to populations adapting to indole. To study the genomic changes associated with this advantage, we sequenced the genomes of 384 clones isolated from selected replicates at the end of the experiment. These genomes harbor complex changes that range frompoint mutations to large-scaleDNA amplifications. Among several candidate adaptivemutations, those in the tryptophanase regulator tnaC stand out, because the tna operon inwhich it resides has a known role in indole metabolism. One of the highly recombining populations also shows a significant excess of large-scale segmental DNA amplifications that include the tna operon. This lineage also shows a unique and potentially adaptive combination of point mutations and DNA amplifications that may have originated independently from one another, to be joined later by recombination. Our data illustrate that the advantages of recombination for adaptive evolution strongly depend on the environment, and that they can be associated with complex genomic changes. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    113
    References
    7
    Citations
    NaN
    KQI
    []