Numerical Investigation of Evaporation in the Developing Region of Laminar Falling Film Flow Under Constant Wall Heat Flux Conditions

2010 
A finite-volume-based incompressible flow algorithm on Cartesian grid is presented for the simulation of evaporation phenomena in a falling liquid film under low wall superheat conditions. The model employs the PLIC–VOF method to capture the free surface evolution, and the continuum surface force (CSF) approximation to emulate the effects of interfacial tension. The phase change process is represented through a source term in the interfacial cells, which is evaluated from the normal temperature gradients on either side of the interface. In order to evaluate these discontinuous temperature gradients across the interface accurately, a simple and efficient ghost fluid method has been implemented, which properly takes into account the dynamic evolution of the interface. The overall numerical model, including the phase change algorithm, has been validated against standard benchmark analytical results. Finally, the model is used to simulate the evaporating flow of a 2-D laminar, developing film falling over an ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    7
    Citations
    NaN
    KQI
    []