Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure

2008 
Administration of chemically synthesized ghrelin (Ghr) peptide has been shown to increase food intake and body adiposity in most species. However, the biological role of endogenous Ghr in the molecular control of energy metabolism is far less understood. Mice deficient for either Ghr or its receptor (the growth hormone secretagogue receptor, GHS-R1a) seem to exhibit enhanced protection against high-fat diet-induced obesity but do not show a substantial metabolic phenotype on a standard diet. Here we present the first mouse mutant lacking both Ghr and the Ghr receptor. We demonstrate that simultaneous genetic disruption of both genes of the Ghr system leads to an enhanced energy metabolism phenotype. Ghr/Ghr receptor double knockout (dKO) mice exhibit decreased body weight, increased energy expenditure, and increased motor activity on a standard diet without exposure to a high caloric environment. Mice on the same genetic background lacking either the Ghr or the Ghr receptor gene did not exhibit such a phe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    154
    Citations
    NaN
    KQI
    []