CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys.
2021
The grain boundary (GB) microchemistry and precipitation behaviour in high-strength Al-Zn-Mg-Cu alloys has an important influence on their mechanical and electrochemical properties. Simulation of the GB segregation, precipitation, and solute distribution in these alloys requires an accurate description of the thermodynamics and kinetics of this multi-component system. CALPHAD databases have been successfully developed for equilibrium thermodynamic calculations in complex multi-component systems, and in recent years have been combined with diffusion simulations. In this work, we have directly incorporated a CALPHAD database into a phase-field framework, to simulate, with high fidelity, the complex kinetics of the non-equilibrium GB microstructures that develop in these important commercial alloys during heat treatment. In particular, the influence of GB solute segregation, GB diffusion, precipitate number density, and far-field matrix composition, on the growth of a population of GB precipitates, was systematically investigated in a model Al-Zn-Mg-Cu alloy of near AA7050 composition. The simulation results were compared with scanning transmission electron microscopy and atom probe tomography characterisation of alloys of the similar composition, with good agreement.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI