The Reconstruction and Failure Analysis of The Space Shuttle Columbia

2010 
Several days following the Columbia accident a team formed and began planning for the reconstruction of Columbia. A hangar at the Kennedy Space Center was selected for this effort due to it's size, available technical workforce and materials science laboratories and access to the vehicle ground processing infrastructure. The Reconstruction team established processes for receiving, handling, decontamination, tracking, identifying, cleaning and assessment of the debris. Initially, a 2-dimensional reconstruction of the Orbiter outer mold line was developed. As the investigation progressed fixtures which allowed a 3-dimensional reconstruction of the forward portions of the left wing's leading edge was developed. To support the reconstructions and forensic analyses a Materials and Processes (M&P) 'team was formed. This M&P team established processes for recording factual observations, debris cleaning, and engineering analysis. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The Team also assessed left hand airframe components that were believed to be associated with a structural breach of Columbia. A major portion of this analysis was evaluation of metallic deposits were prevalent on left wing leading edge components. Extensive evaluation of the visual, metallurgical and chemical nature of the deposits provided conclusions that were consistent with the visual assessments and interpretations of the NASA lead teams and the findings of the Columbia Accident Investigation Board. Analytical data collected by the M&P Team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH RCC Panels 8-9, and a correlation was formed between the deposits and overheating in these areas to the wing leading edge components. The analysis of deposits also showed exposure to temperatures in excess of 1649 C (3200 F), which would severely degrade support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC Panel 8.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []