The influence of Ca2+ concentration on voltage-dependent L-type calcium channels' expression in the marbled eel (Anguilla marmorata)

2019 
Abstract The catadromous species, eels, invariably exposed to variable Ca2+ concentrations circumstance i.e., lagoon or ocean. They need to maintain Ca2+ homeostasis by exchanging Ca2+ under different culture conditions. To understand the effects of environmental Ca2+ to fish, three types of genes coding for voltage-dependent L-type calcium channels (cacnb1, 2, 3) were cloned by screening an A. marmorata cDNA library. Tissue distribution analysis of Western blot showed that Cacnb1, 2, 3 had a significantly high expression in gill; while mRNA results showed the expressions of cacnb1 and cacnb3 were predominated in skin tissue but only cacnb2 was expressed in intestine. Serum osmolality and Ca2+ concentrations of A.marmorata were increased in a high calcium environment while reduced in a low calcium environment within 7 days; however, they were not significantly different among Ca2+ treatments after the eels were acclimated for 7 days. We also examined the influence of ambient Ca2+ levels on cacnbs expression of eels. With the increasing of exposure time, mRNA and protein expressions of cacnb1 were up-regulated in high level of Ca2+ (10 mM) and down-regulated in deficient Ca2+ (0 mM) compared to the control Ca2+ (2 mM). However, the opposite results were observed in cacnb2 and cacnb3. Notably, the cacnb2 expression was not significant different among Ca2+ treatments on day 7. Our study provided the insightful evidence that cacnbs play important roles in maintaining Ca2+ homeostasis of fish.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []