Effect of Metal-Induced Lateral Crystallization Boundary Located in the TFT Channel Region on the Leakage Current

2000 
In the case of metal-induced lateral crystallization (MILC) for low temperature poly-Si TFT, offset length between Ni-thin film and the sides of gate could be modified to control the location of MILC boundary. Electrical characteristics were compared to analyze the effect of MILC boundary that was located either in or out of the channel region of the TFT. By removing the MILC boundary from channel region, on current, subthreshold slope and leakage current properties could be improved. When MILC boundary was located in the channel region, leakage current was reduced with electrical stress biasing. The amount of reduction increased as the channel width increased, but it was independent of the channel length.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []