Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight

2022 
Abstract In this study, a graphitic carbon nitride (g-C3N4) based ternary catalyst CuO/CuFe2O4/g-C3N4 (CCCN) is successfully prepared thorough calcination method. After confirming the structure and composition of CCCN, the as-synthesized composites are utilized to activate persulfate (PS) for the degradation of organic contaminant. While using tetracycline hydrochloride (TC) as pollutant surrogate, the effects of initial pH, PS and catalyst concentration on the degradation rate are systematically studied. Under the optimized reaction condition, CCCN/PS is able to give 99% degradation extent and 74% chemical oxygen demand removal in assistance of simulated solar light, both of which are apparently greater than that of either CuO/CuFe2O4 and pristine g-C3N4. The great improvement in degradation can be assignable to the effective separation of photoinduced carriers thanks to the integration between CuO/CuFe2O4 and g-C3N4, as well as the increased reaction sites given by the g-C3N4 substrate. Moreover, the scavenging trials imply that the major oxidative matters involved in the decomposition are hydroxyl radicals (•OH), superoxide radicals (•O2−) and photo-induced holes (h+).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    7
    Citations
    NaN
    KQI
    []