Identification of C-β-d-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies

2019 
Several C-β-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson (RP) and Spearman (RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(β-d-glucopy...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    9
    Citations
    NaN
    KQI
    []