Locally optimized non-local means denoising for low-dose X-ray backscatter imagery.

2014 
While recent years have seen considerable progress in image denoising, the leading techniques have been developed for digital photographs or other images that can have very different characteristics than those encountered in X-ray applications. In particular here we examine X-ray backscatter (XBS) images collected by airport security systems, where images are piecewise smooth and edge information is typically more correlated with objects while texture is dominated by statistical noise in the detected signal. In this paper, we show how multiple estimates for a denoised XBS image can be combined using a variational approach, giving a solution that enhances edge contrast by trading off gradient penalties against data fidelity terms. We demonstrate the approach by combining several estimates made using the non-local means (NLM) algorithm, a widely used patch-based denoising method. The resulting improvements hold the potential for improving automated analysis of low-SNR X-ray imagery and can be applied in other applications where edge information is of interest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []