Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors

2018 
Centrioles are essential microtubule-based organelles organizing cilia and centrosomes. Their mode of biogenesis is semi-conservative: each pre-existing centriole scaffolds the formation of a new one, a process coordinated with the cell cycle. By contrast, multiciliated progenitors with two centrosomal centrioles massively amplify centrioles to support the nucleation of hundred of motile cilia and transport vital fluids. This occurs through cell type-specific organelles called deuterosomes, composed of centrosome-related elements, and is regulated by the cell cycle machinery. Deuterosome-dependent centriole amplification was proposed for decades to occur de novo, i.e. independently from pre-existing centrioles. Challenging this hypothesis, we recently reported an accumulation of procentriole and deuterosome precursors at the centrosomal daughter centriole during centriole amplification in brain multiciliated cells. Here we further investigate the relationship between the centrosome and the dynamic of centriole amplification by (i) characterizing the centrosome behavior during the centriole amplification dynamics and (ii) assessing the dynamics of amplification in centrosome-depleted cells. Surprisingly, although our data strengthen the centrosomal origin of amplified centrioles, we show limited consequences in deuterosome/centriole number when we deplete centrosomal centrioles. Interestingly, in absence of centrosomal centrioles, procentrioles are still amplified sequentially from a single focal region, characterized by microtubule convergence and pericentriolar material (PCM) self-assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    5
    Citations
    NaN
    KQI
    []