VOCs adsorption of resin-based activated carbon and bamboo char: Porous characterization and nitrogen-doped effect

2020 
Abstract The objective of this study was to assess the VOCs (methanol and toluene) adsorption capacity of doped porous carbon materials (resin-based carbon and bamboo char) by experiments and theoretical calculations. Results showed N-doped porous carbon material exhibited a high specific area (2293.2 m2 g−1), a desirable microporocity (0.90 cm3 g−1), and a large adsorption capacity for methanol (915.3 mg g−1) and toluene (622.9 mg g−1), which were better than those derived from bamboo char. According to the density functional theory calculation, in terms of different N-containing functional groups, the results showed that methanol adsorption was dominated by the electrostatic interaction between the carbon surface and methanol, while toluene was mainly trapped through π-π dispersive interaction with the aromatic ring moving to the carbon surface. This study gave us hints to conduct the doping of polarized element to adsorb polar gases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    13
    Citations
    NaN
    KQI
    []