In silico investigation of cornea deformation during irrigation/aspiration in phacoemulsification in cataract surgery

2017 
Abstract To analyze the stress, strain and displacement of the human cornea under the action of negative intraocular pressure, which occurs during phacoemulsification in cataract surgery, a multidisciplinary approach including biomedical engineering, solid mechanics, numerical analysis, and fluid dynamics was used. Fluid-structure interaction method was implemented using 3-dimensional nonlinear finite element analysis of cornea tissue in conjunction with CFD analysis of anterior chamber fluid flow to study the deformation of the cornea under negative gage pressure during irrigation and aspiration (I/A). The computational model of the eye includes both cornea and sclera. To increase the accuracy of the computational model, both cornea hyperelasticity and thickness variation were included in the analysis. The simulation was performed for both coaxial and bimanual I/A systems with different flow rates. The cornea deformations for various flow rates were evaluated, and the possibility of an unstable anterior chamber was assessed. The results show that the critical pressure in the anterior chamber, which may lead to the surge condition due to buckling of the cornea, is sub-ambient (below zero gauge pressure). Anterior chamber instability occurs at higher volume flow rates for coaxial I/A system compared with that for bimanual system, but the deformation of the cornea is more intense for the bimanual system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []