On the role of ion potential energy in low energy HiPIMS deposition: An atomistic simulation.

2021 
We study the effect of the so-called ion potential or non-kinetic energies of bombarding ions during ionized physical vapor deposition of Cu using molecular dynamics simulations. In particular we focus on low energy HiPIMS deposition, in which the potential energy of ions can be comparable to their kinetic energy. The ion potential, as a short-ranged repulsive force between the ions of the film-forming material and the surface atoms (substrate and later film), is defined by the Ziegler-Biersack-Littmark potential. Analyzing the final structure indicates that, including the ion potential leads to a slightly lower interface mixing and fewer point defects (such as vacancies and interstitials), but resputtering and twinning have increased slightly. However, by including the ion potential the collision pattern changes. We also observed temporary formation of a ripple/pore with 5~nm height when the ion potential is included. The latter effect can explain the pores in HiPIMS deposited Cu thin films observed experimentally by atomic force microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []