A chemical approach to the identification of tensin-binding proteins.

2007 
Many protein–protein interactions are mediated by small modular domains, which recognize short peptide motifs in their partner proteins. However, for the great majority of these domains, the identity of their partner proteins remains unknown. In this work, a chemical/bioinformatics approach has been developed to identify phosphotyrosyl (pY) proteins that bind to tensin, a protein involved in the formation of actin cytoskeleton and signal transduction. A pY peptide library was chemically synthesized and screened against the Src homology 2 (SH2) domain of tensin to identify the peptide motifs that bind to the SH2 domain. Next, protein databases were searched for proteins containing the SH2 domain-binding peptide motifs. Finally, the potential tensin-binding proteins were confirmed (or disproved) by in vitro pull-down and coimmunoprecipitation assays. This procedure identified phosphoinositide-dependent kinase-1 and downstream of tyrosine kinase 2 as novel tensin-binding proteins. In addition, a cell-permeab...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    24
    Citations
    NaN
    KQI
    []