NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation

2019 
Pulmonary nodule detection, false positive reduction and segmentation represent three of the most common tasks in the computer aided analysis of chest CT images. Methods have been proposed for each task with deep learning based methods heavily favored recently. However training deep learning models to solve each task separately may be sub-optimal - resource intensive and without the benefit of feature sharing. Here, we propose a new end-to-end 3D deep convolutional neural net (DCNN), called NoduleNet, to solve nodule detection, false positive reduction and nodule segmentation jointly in a multi-task fashion. To avoid friction between different tasks and encourage feature diversification, we incorporate two major design tricks: (1) decoupled feature maps for nodule detection and false positive reduction, and (2) a segmentation refinement subnet for increasing the precision of nodule segmentation. Extensive experiments on the large-scale LIDC dataset demonstrate that the multi-task training is highly beneficial, improving the nodule detection accuracy by 10.27%, compared to the baseline model trained to only solve the nodule detection task. We also carry out systematic ablation studies to highlight contributions from each of the added components. Code is available at https://github.com/uci-cbcl/NoduleNet.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    44
    Citations
    NaN
    KQI
    []