RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network.

2021 
Age-related macular degeneration (AMD) is one of the leading causes of irreversible blindness and is characterized by fluid-related accumulations such as intra-retinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED). Spectral-domain optical coherence tomography (SD-OCT) is the primary modality used to diagnose AMD, yet it does not have algorithms that directly detect and quantify the fluid. This work presents an improved convolutional neural network (CNN)-based architecture called RetFluidNet to segment three types of fluid abnormalities from SD-OCT images. The model assimilates different skip-connect operations and atrous spatial pyramid pooling (ASPP) to integrate multi-scale contextual information; thus, achieving the best performance. This work also investigates between consequential and comparatively inconsequential hyperparameters and skip-connect techniques for fluid segmentation from the SD-OCT image to indicate the starting choice for future related researches. RetFluidNet was trained and tested on SD-OCT images from 124 patients and achieved an accuracy of 80.05%, 92.74%, and 95.53% for IRF, PED, and SRF, respectively. RetFluidNet showed significant improvement over competitive works to be clinically applicable in reasonable accuracy and time efficiency. RetFluidNet is a fully automated method that can support early detection and follow-up of AMD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []