Maternal perinatal transfer of vitamins and trace elements to piglets

2019 
Nursing piglets are entirely dependent, for their micronutrient provisions, upon in utero, colostrum and milk transfers from the dam. An adequate maternal transfer of micronutrients is all the more important during these periods which, in fact, lasts for approximately half the life cycle (conception to slaughter) of modern pigs. The present study aimed to set up a simple approach to assess the maternal perinatal transfer of vitamins and trace elements in sows. Prenatal transfer (R-u) was estimated as limited, passive or active using the ratio between pre-colostral serum concentrations of a given micronutrient in newborn piglets and corresponding pre-farrowing values in sows. Efficiency of the postnatal transfer (R-c) was estimated from the ratio between serum concentrations of post- and pre-colostral micronutrients in piglets. Data from literature (12 studies) were used for vitamins A, D, E, C, folic acid and B12, whereas vitamins B2, B3, B6 and B8 as well as Zn, Fe, Cu and Se were generated from a trial where blood sera from 20 sows, and their litter were collected during the perinatal period. In sow trial, statistical t tests were used to determine if ratios differed from 1. Prenatal transfer was active and in favour of piglets (R-u > 1, P 0.37). After birth, the early postnatal transfer through colostrum was active towards piglets for most micronutrients but vitamins B6 and B8 (R-c < 1, P < 0.01). Globally, the perinatal transfer (combination of R-u and R-c) was favourable to the neonatal piglets for most micronutrients except for vitamins A and D as well as Fe, Cu and Se whereas there is apparently a barrier for prenatal transfer which is not compensated by the colostrum provision to neonatal piglets. Then, post-colostral concentrations of these micronutrients in piglets remain below prenatal levels of their dam. Neonatal strategies of micronutrient provision are known for Fe (intramuscular injection) and Se (sow milk enrichment). Further studies are needed to assess the importance of the unfavourable perinatal transfer for Cu and vitamins A and D for piglet robustness later in life.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    6
    Citations
    NaN
    KQI
    []