A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading

2020 
Abstract We present a simple, efficient and easy-to-use finite element (FE) model for the simulation of progressive damage in quasi-isotropic IM7/8552 carbon fibre reinforced composites under low velocity impact loading. The sub-laminate based continuum-discrete model in the commercial FE software LS-DYNA consists of built-in tools to facilitate modelling and analysis. The coupled plastic-damage material card MAT81 describes intralaminar damage in tension and compression which is calibrated using digital image correlation in over-height compact tension and compact compression tests to extract damage properties such as strain softening curves and size of the failure process zone. The cohesive interface formulation is virtually calibrated leading to realistic zones of delamination. The proposed model was applied to a wide range of impact loadings and compared to results obtained from experimental testing and high-fidelity FE models. Besides the good correlation between simulation and experiments, we demonstrate how to quantify different energy dissipation mechanisms during impact events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    6
    Citations
    NaN
    KQI
    []