농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석

2021 
기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []