On relating one-way classical and quantum communication complexities.

2021 
Let $f: X \times Y \rightarrow \{0,1,\bot \}$ be a partial function and $\mu$ be a distribution with support contained in $f^{-1}(0) \cup f^{-1}(1)$. Let $\mathsf{D}^{1,\mu}_\epsilon(f)$ be the classical one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$, $\mathsf{Q}^{1,\mu}_\epsilon(f)$ be the quantum one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$ and $\mathsf{Q}^{1,\mu, *}_\epsilon(f)$ be the entanglement assisted one-way communication complexity of $f$ with average error under $\mu$ at most $\epsilon$. We show: 1. If $\mu$ is a product distribution, then $\forall \epsilon, \eta > 0$, $$\mathsf{D}^{1,\mu}_{2\epsilon + \eta}(f) \leq \mathsf{Q}^{1,\mu, *}_{\epsilon}(f) /\eta+O\bigl(\log(\mathsf{Q}^{1,\mu, *}_{\epsilon}(f))/\eta\bigr).$$ 2. If $\mu$ is a non-product distribution, then $\forall \epsilon, \eta > 0$ such that $\epsilon/\eta + \eta < 0.5$, $$\mathsf{D}^{1,\mu}_{3\eta}(f) = O(\mathsf{Q}^{1,\mu}_{\epsilon}(f) \cdot \mathsf{CS}(f)/\eta^4)\enspace,$$ where \[\mathsf{CS}(f) = \max_{y} \min_{z\in\{0,1\}} \{ \vert \{x~|~f(x,y)=z\} \vert\} \enspace.\]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []