Influence of Vibronic Coupling on Band Structure and Exciton Self-Trapping in α-Perylene

2011 
Exciton sizes influence transport processes and spectroscopic phenomena in molecular aggregates and crystals. Thermally driven nuclear motion generally localizes electronic states in equilibrium systems. Exciton sizes also undergo dynamic changes caused by nonequilibrium relaxation in the lattice structure local to the photoexcitations (i.e., self-trapping). The α-phase of crystalline perylene is particularly well-suited for fundamental studies of exciton self-trapping mechanisms. It is generally agreed that a subpicosecond self-trapping process in α-perylene localizes photoexcited excitons onto pairs of closely spaced molecules (i.e., dimers), which then relax through excimer emission. Here, electronic relaxation dynamics in α-perylene single crystals are investigated using a variety of nonlinear optical spectroscopies in conjunction with a Frenkel exciton model. Linear absorption and photon echo spectroscopies suggest that excitons are delocalized over less than four unit cells (16 molecules) at 78 K pr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    21
    Citations
    NaN
    KQI
    []