Low temperature platinum chemical vapor deposition on functionalized self-assembled monolayers

2020 
The reaction pathways of Pt CVD using (COD)PtMe2 – xClx (x = 0, 1, 2) have been investigated on functionalized self-assembled monolayers (SAMs) as models for organic substrates. Residual gas analysis for (COD)PtMe2 and (COD)PtMeCl is consistent with the loss of methyl radicals as the initial step in deposition, while for (COD)PtCl2, the first step is the loss of a chlorine radical. It is further shown using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry that the deposition process leads to chemical damage of the SAM layer and little Pt deposition. Using this understanding, it is demonstrated that the Pt CVD rate can be controlled using a radical trap. In the presence of 1,4-cyclohexadiene, a well-known alkyl radical trap, Pt deposition was increased by 5× to 10×, creating a room-temperature effective Pt CVD process. The reaction pathways of Pt CVD using (COD)PtMe2 – xClx (x = 0, 1, 2) have been investigated on functionalized self-assembled monolayers (SAMs) as models for organic substrates. Residual gas analysis for (COD)PtMe2 and (COD)PtMeCl is consistent with the loss of methyl radicals as the initial step in deposition, while for (COD)PtCl2, the first step is the loss of a chlorine radical. It is further shown using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry that the deposition process leads to chemical damage of the SAM layer and little Pt deposition. Using this understanding, it is demonstrated that the Pt CVD rate can be controlled using a radical trap. In the presence of 1,4-cyclohexadiene, a well-known alkyl radical trap, Pt deposition was increased by 5× to 10×, creating a room-temperature effective Pt CVD process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []