A fiber optic sensor for transverse strain measurement

1999 
A fiber optic sensor capable of measuring two independent components of transverse strain is described. The sensor consists of a single Bragg grating written into high-birefringent, polarization-maintaining optical fiber. When light from a broadband source is used to illuminate the sensor, the spectra of light reflected from the Bragg grating contain two peaks corresponding to the two orthogonal polarization modes of the fiber. Two independent components of transverse strain in the core of the fiber can be computed from the changes in wavelength of the two peaks if axial strain and temperature changes in the fiber are zero or known. Experiments were performed to determine the response of the sensor by loading an uncoated sensor in diametral compression over a range of fiber orientations relative to the loading. The results of these experiments were used with a finite element model to determine a calibration matrix relating the transverse strain in the sensor to the wavelength shifts of the Bragg peaks. The performance of the sensor was then verified by measuring the transverse strains produced by loading the fiber in a V-groove fixture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    114
    Citations
    NaN
    KQI
    []