Development and Validation of a 3-Dimensional Computational Fluid Dynamics(CFD) Model for Rectangular Settling Tanks in New York City Water Pollution Control Plants

2008 
New York City provides secondary treatment to approximately 78.6 m3/s among its 14 water pollution control plants (WPCPs). The process of choice has been step-feed activated sludge. Changes to the permit limits require nitrogen removal in WPCPs discharging into the Long Island Sound. The City has selected step feed biological nitrogen removal (BNR) process to upgrade the affected plants. Step feed BNR requires increasing the concentration of mixed liquors, (MLSS), which stresses the Gould II type rectangular final settling tanks (FSTs). To assess performance and evaluate alternatives to improve efficiency of the FSTs at the higher loads, New York City Department of Environmental Protection (NYCDEP) and City College of New York (CCNY) have developed a three-dimensional computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Using Computational Fluid Dynamics (CFD) Model, Fluent 6.3.26TM as the base platform, sub-models of the SS settling characteristics as well as turbulence, flocculation, etc. were incorporated. This was supplemented by field and bench scale experiments to quantify the co-efficients integral to the sub-models. As a result, a three-dimensional model has been developed that is being used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []