Functional interaction of cryptochrome 1 and phytochrome D

1999 
Summary Arabidopsis thaliana wild-type and single, double and triple mutants lacking phytochrome A (phyA-201), phytochrome B (phyB-5), phytochrome D (phyD-1), phytochrome E (phyE-1), cryptochrome 1 (hy4-2.23n) and cryptochrome 2 (fha-1) were used to study the photoreceptor signal-transduction network. The inhibition of hypocotyl elongation was analysed using pulses of red light preceded by a pre-irradiation of white light. The interactions of phyA, phyB and cry1 have been studied in a series of previous papers. Here we focus on the signal transduction initiated by phyD. We observed that phyD can partly substitute for the loss of phyB. Specifically, in the phyB background, red pulses were only effective if both cry1 and phyD were present. The response to red pulses, enabled by the pre-irradiation of white light, was completely reversible by far-red light. Loss of reversibility occurred with an apparent half-life of 2 h, similar to the half-life of 3 h observed for the effect mediated by phyB. Furthermore, we could show that the response to an end-of-day far-red pulse in phyB depends on both phyD and cry1. In contrast to phyD, a functional interaction of phyE and cry1 could not be detected in Arabidopsis seedlings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    40
    Citations
    NaN
    KQI
    []