Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications.
2015
AbstractCytochrome P450 2D6 (CYP2D6) is a polymorphic enzyme responsible for metabolizing approximately 25% of all drugs. CYP2D6 is highly expressed in the brain and plays a role as the major CYP in the metabolism of numerous brain-penetrant drugs, including antipsychotics and antidepressants. CYP2D6 activity and inhibition have been associated with numerous undesirable effects in patients, such as bioactivation, drug-associated suicidality and prolongation of the QTc interval. Several in silico tools have been developed in recent years to assist safety assessment scientists in predicting the structural identity of CYP2D6-derived metabolites. The first goal of this study was to perform a comparative evaluation on the ability of four commonly used in silico tools (MetaSite, StarDrop, SMARTCyp and RS-WebPredictor) to correctly predict the CYP2D6-derived site of metabolism (SOM) for 141 compounds, including 10 derived from the Genentech small molecule library. The second goal was to evaluate if a bioactivati...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
336
References
10
Citations
NaN
KQI