Signal Photon Extraction Method for Weak Beam Data of ICESat-2 Using Information Provided by Strong Beam Data in Mountainous Areas

2021 
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) can measure the elevations of the Earth’s surface using a sampling strategy with unprecedented spatial detail. In the daytime of mountainous areas where the signal–noise ratio (SNR) of weak beam data is very low, current algorithms do not always perform well on extracting signal photons from weak beam data (i.e., many signal photons were missed). This paper proposes an effective algorithm to extract signal photons from the weak beam data of ICESat-2 in mountainous areas. First, a theoretical equation of SNR for ICESat-2 measured photons in mountainous areas was derived to prove that the available information provided by strong beam data can be used to assist the signal extraction of weak beam data (that may have very low SNR in mountainous areas). Then, the relationship between the along-track slope and the noise level was used as the bridge to connect the strong and weak beam data. To be specific, the along-track slope of the weak beam was inversed by the slope–noise relationship obtained from strong beam data, and then was used to rotate the direction of the searching neighborhood in the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. With the help of this process, the number of signal photons included in the searching neighborhood will significantly increase in mountainous areas and will be easily detected from the measured noisy photons. The proposed algorithm was tested in the Tibetan Plateau, the Altun Mountains, and the Tianshan Mountains in different seasons, and the extraction results were compared with the results from the ATL03 datasets, the ATL08 datasets, and the classical DBSCAN algorithm. Based on the ground-truth signal photons obtained by visual inspection, the parameters of the classification precision, recall, and F-score of our algorithm and three other algorithms were calculated. The modified DBSCAN could achieve a good balance between the classification precision (93.49% averaged) and recall (89.34% averaged), and its F-score (more than 0.91) was higher than that of the other three methods, which successfully obtained a continuous surface profile from weak beam data with very low SNRs. In the future, the detected signal photons from weak beam data are promising to assess the elevation accuracy achieved by ICESat-2, estimate the along-track and cross-track slope, and further obtain the ground control points (GCPs) for stereo-mapping satellites in mountainous areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []