Highly dispersed PtCo nanoparticles on micro/nano-structured pyrolytic carbon from refined sugar for methanol electro-oxidation in acid media

2018 
Abstract In this work, anodic electrocatalyst (20%wt of metal loading) as PtCo nanoparticles (atomic ratio of 48:52) on micro/nano-structured pyrolytic carbon (MNC) was synthesized by sequential impregnation method and chemical reduction route using citric acid and Ar-H 2 static atmosphere. MNC sample was synthesized via nanocasting process with anhydrous pyrolysis at 800 °C using SBA-15 as hard template and refined sugar as carbon source. SBA-15 was prepared via sol gel using pluronic P-123 as surfactant and tetraethoxysilane as silica precursor. The prepared materials were characterized by means of N 2 physisorption, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy. The performance of PtCo/MNC for methanol oxidation reaction (MOR) was measured by cyclic voltammetry, chronoamperometry. The electrochemical characterization techniques revealed that the mass activity of PtCo/MNC and the commercial electrocatalyst Pt/C (20%wt of Pt loading) at 20 cycles were 481 and 372 mA/mg Pt respectively as well as the resistance to the accumulation intermediate carbonaceous species (methoxy, aldehyde, formaldehyde and carbon monoxide) denoted by the ratio I f /I b for these catalysts were 1.30 and 0.76 respectively. PtCo/MNC exhibit better electrocatalytic performance, electrochemical stability and best resistance to carbonaceous intermediates species in the electro-oxidation of methanol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    6
    Citations
    NaN
    KQI
    []