Two-timescale neurodynamic approaches to supervised feature selection based on alternative problem formulations.

2021 
Abstract Feature selection is a crucial step in data processing and machine learning. While many greedy and sequential feature selection approaches are available, a holistic neurodynamics approach to supervised feature selection is recently developed via fractional programming by minimizing feature redundancy and maximizing relevance simultaneously. In view that the gradient of the fractional objective function is also fractional, alternative problem formulations are desirable to obviate the fractional complexity. In this paper, the fractional programming problem formulation is equivalently reformulated as bilevel and bilinear programming problems without using any fractional function. Two two-timescale projection neural networks are adapted for solving the reformulated problems. Experimental results on six benchmark datasets are elaborated to demonstrate the global convergence and high classification performance of the proposed neurodynamic approaches in comparison with six mainstream feature selection approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    1
    Citations
    NaN
    KQI
    []