Comprehensive Analysis of Lysine Acetylome Reveals a Site-Specific Pattern in Rapamycin-Induced Autophagy

2019 
Protein acetylation reportedly acts as a key regulator of autophagy. However, up to now, the relationship between acetylome and autophagy has remained unclear. Here stable isotope labeling of amino acids in cell culture and high-throughput quantitative mass spectrometry were used to perform an acetylome analysis of rapamycin-induced autophagy in vitro. Our data revealed that 2135 sites were quantified on 1081 proteins. During autophagy, 421 sites were significantly regulated on 296 proteins, with 80.8% of sites downregulated and 19.2% upregulated. Motif enrichment analysis revealed five main motifs. Most of the downregulated sites conformed to the classical functional motif of p300/CBP [G-AcK]. Furthermore, acetylation targeted proteins involved mainly in ribosomes, spliceosomes, and AcCoA-related metabolic process. In-depth analysis indicated that most of the acetylation sites were in the critical domain, were functional sites, or could change their enzymatic activity by acetylation, highlighting the imp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []