F2-isoprostanes and F4-neuroprostanes as markers of intracranial aneurysm development

2018 
BACKGROUND: Intracranial aneurysms are common, occurring in about 1-2% of the population. Saccular aneurysm is a pouch-like pathological dilatation of an intracranial artery that develops when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. OBJECTIVES: The aim of this study was to determine whether the development of intracranial aneurysms and subarachnoid hemorrhage (SAH) affects neuronal phospholipid metabolism, and what influence different invasive treatments have on brain free radical phospholipid metabolism. MATERIAL AND METHODS: The level of polyunsaturated fatty acid (PUFA) cyclization products - F2-isoprostanes and F4-neuroprostanes - was examined using liquid chromatography - mass spectrometry (LC-MS) in the plasma of patients with brain aneurysm and resulting subarachnoid hemorrhage. RESULTS: It was revealed that an aneurysm leads to the enhancement of lipid peroxidation with a significant increase in plasma F2-isoprostanes and F4-neuroprostanes (more than 3-fold and 11-fold, respectively) in comparison to healthy subjects. The rupture of an aneurysm results in hemorrhage and an additional increase in examined prostaglandin derivatives. The embolization and clipping of aneurysms contribute to a gradual restoration of metabolic homeostasis in brain cells, which is visible in the decrease in PUFA cyclization products. CONCLUSIONS: The results indicate that aneurysm development is associated with enhanced inflammation and oxidative stress, factors which favor lipid peroxidation, particularly in neurons, whose membranes are rich in docosahexaenoic acid, a precursor of F4-neuroprostanes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []