CHF on Anodized Zirconium-based Alloy Surfaces with Protective Oxide Layers for ATF cladding

2021 
Abstract An anodization method is considered for the accident-tolerant fuel cladding in nuclear power plants. A new approach is used to form stable/intact nanostructures on the conventional Zr-based cladding surface to protect the surface against active oxidation under high-temperature steam conditions. CHF experiments have been performed to consider the anodizing time, boric acid concentration and irradiation effects. After certain periods, the CHF values become saturated, and the boric acid-added coolant shows noticeable effects on the non-anodized surface. The irradiated surfaces become hydrophobic but still showed better CHF results than the non-anodized surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []