Monoatomic Platinum-Embedded Hexagonal Close-Packed Nickel Anisotropic Superstructures as Highly Efficient Hydrogen Evolution Catalyst.

2021 
The rational design of platinum (Pt) based nanostructures with specific crystal structure plays a significant role in their diverse applications. Herein, the anisotropic superstructures (ASs) of monoatomic Pt-embedded hexagonal close-packed nickel (hcp Ni) nanosheets were successfully synthesized for efficient hydrogen evolution in which an unusual dissociation-diffusion-desorption mechanism played a crucial role. The overpotential for the Pt/Ni ASs to reach the specific current density (10 mA cm-2) is 28.0 mV, which is much lower than that of conventional Pt/C catalyst (71.0 mV). Moreover, at the overpotential of 100 mV, the mass activity of 30.2 A mgPt-1 for the Pt/Ni ASs is 1060% greater than that in conventional Pt/C catalyst (2.6 A mgPt-1). This work provides a new approach to synthesize highly anisotropic superstructures embedded with monoatomic noble metals to boost their hopeful applications in catalytic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []