Targeted Therapy in Multiple Myeloma

2005 
Background: Multiple myeloma (MM) is an incurable malignancy. Recent insights into its biology has allowed the use of novel therapies targeting not only the deregulated intracellular signaling in MM cells but also its interaction with the bone marrow microenvironment that confers drug resistance, growth, and survival advantage to the malignant cells. Methods: We review and summarize the recent advances in our knowledge of myeloma biology as well as the mechanism of action and clinical efficacy for novel therapeutic agents in clinical trials. Results: Several novel therapeutic agents are currently in clinical trials. Thalidomide is already established for both initial and salvage treatment. Bortezomib is being tested alone and in combination with conventional chemotherapy in various settings. Other agents are less effective in producing response but have been able to stabilize disease in patients with relapsed and/or refractory disease, such as arsenic trioxide, farnesyltransferase inhibitors, 2-methoxyestradiol, and vascular endothelial growth factor receptor inhibitors. Insights into drug resistance mechanism have also led to the development of novel agents that sensitize myeloma cells to chemotherapy (Bcl-2 antisense). Gene expression studies have in many instances identified pathways other than the intended target of the drug and have provided insights into the therapeutic mechanisms. Conclusions: In the future, patients with MM will have more therapeutic options available than ever before. The challenge will be to identify patient subgroups that will benefit most from the different therapies and then determine how these biologically based therapies could be combined and incorporated into the overall management of patients. A new class of compounds with a novel mechanism of action has shown clinical efficacy for the treatment of multiple myeloma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    152
    References
    39
    Citations
    NaN
    KQI
    []