The Newtonian gravity of irregular shapes using STL files and 3D printing

2021 
The gravitational interactions of irregular shapes are rarely discussed in the compulsory schooling system and sometimes even ignored at the university level. This omission is due to the complexities encountered in extending Newton's law of gravitation to bodies that are not spherical. However, a deep understanding of the link between the gravity and the shape is quite important to interpret some basic facts of nature. In this paper, we show how simple concepts can be used to create a more general algorithm that has been implemented in matlab to compute the gravity of irregular bodies. Shapes are described in terms of Standard Tessellation Language files, the standard format for 3D printing. This approach to teaching allows students to model physical bodies, and the 3D representation of complex problems can help students acquire a more complete understanding of physics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []