Polarity and cell fate asymmetry in Caulobacter crescentus

2012 
The production of asymmetric daughter cells is a hallmark of metazoan development and critical to the life cycle of many microbes, including the α-proteobacterium Caulobacter crescentus. For Caulobacter, every cell division is asymmetric, yielding daughter cells with different morphologies and replicative potentials. This asymmetry in daughter cell fate is governed by the response regulator CtrA, a transcription factor that can also bind and silence the origin of replication. CtrA activity is controlled by a complex regulatory circuit that includes several polarly localized histidine kinases. This circuit ensures differential activation of CtrA in daughter cells, leading to their asymmetric replicative potentials. Here, we review progress in elucidating the molecular mechanisms regulating CtrA and the role of cellular polarity in this process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    89
    Citations
    NaN
    KQI
    []