Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer

2021 
Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC. Ling Cai et al. used transcriptomic profiling data of healthy lung, patient-derived small cell lung cancer cell lines, xenografts, and primary tumors to examine a link between neuroendocrine (NE) signatures and immune gene expression. Their findings suggest that cell-autonomous immune gene repression is a shared feature between healthy and tumor cells of NE lineage and may influence tumor-immune cell interaction and response to immunotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    1
    Citations
    NaN
    KQI
    []