Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer.

2021 
BACKGROUND Chemotherapy and gene therapy are used in clinical practice for the treatment of castration-resistant prostate cancer. However, the poor efficiency of drug delivery and serious systemic side effects remain an obstacle to wider application of these drugs. Herein, we report newly designed PEO-PCL micelles that were self-assembled and modified by spermine ligand, DCL ligand and TAT peptide to carry docetaxel and anti-nucleostemin siRNA. RESULTS The particle size of the micelles was 42 nm, the zeta potential increased from - 12.8 to 15 mV after grafting with spermine, and the optimal N/P ratio was 25:1. Cellular MTT experiments suggested that introduction of the DCL ligand resulted in high toxicity toward PSMA-positive cells and that the TAT peptide enhanced the effect. The expression of nucleostemin was significantly suppressed in vitro and in vivo, and the tumour-inhibition experiment showed that the dual-drug delivery system suppressed CRPC tumour proliferation. CONCLUSIONS This targeted drug delivery system inhibited the G1/S and G2/M mitotic cycle via synergistic interaction of chemotherapeutics and gene drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    21
    Citations
    NaN
    KQI
    []