Itk Functions to Control Actin Polymerization at the Immune Synapse through Localized Activation of Cdc42 and WASP

2003 
Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse [1]. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes [2]. Since T cells from Rlk−/−, Itk−/−, and Rlk−/− × Itk−/− mice have defects in signaling and development [3], we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk−/− and Rlk−/− × Itk−/− T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    127
    Citations
    NaN
    KQI
    []