Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment

2021 
The coprecipitation of organic carbon with iron minerals is important for its preservation in soils and sediments, but the mechanisms for carbon-iron interactions and thus the controls on organic carbon cycling are far from understood. Here we coprecipitate carboxylic acids with iron (oxyhydr)oxide ferrihydrite and use near-edge X-ray absorption fine structure spectroscopy and wet chemical treatments to determine the relationship between sequestration mechanism and organic carbon stability against its release and chemical oxidative remineralisation. We show that organic carbon sequestration, stabilisation and persistence increase with an increasing number of carboxyl functional groups. We suggest that carboxyl-richness provides an important control on organic carbon preservation in the natural environment. Our work offers a mechanistic basis for understanding the stability and persistence of organic carbon in soils and sediments, which might be used to develop an overarching relationship between organic functional group-richness, mineral interactions and organic carbon preservation in the Earth system. Organic carbon sequestration, stabilisation and burial through its interaction with iron is enhanced by carboxyl-richness of the organic moiety, according to elemental and microstructure analysis of experimentally produced co-precipitates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    0
    Citations
    NaN
    KQI
    []