Time-independent quantum theory on vibrational inelastic scattering between atoms and open-shell diatomic molecules: Applications to NO + Ar and NO + H scattering.

2020 
A full-dimensional rigorous quantum mechanical treatment of non-reactive inelastic scattering of an open-shell diatom [e.g., NO(2Π)] with a structureless and spinless atom is presented within the time-independent close-coupling framework. The inclusion of the diatomic vibrational degree of freedom allows the investigation of transitions between different vibrational manifolds, in addition to those between different rotational, spin-orbit, and Λ-doublet states. This method is applied to the scattering of vibrationally excited NO(2Π) with Ar and H (with its spin ignored). The former has negligible vibrational inelasticity, thanks to the weak interaction between the two collisional partners. This conclusion justifies the commonly used two-dimensional approximation in treating NO scattering with rare gas atoms. The latter, on the other hand, is shown to undergo significant vibrational relaxation, even in the ultra-cold regime, owing to a chemically bonded (HNO) complex on the lowest-lying singlet potential energy surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []