Bifurcation sets arising from non-integer base expansions

2019 
Given a positive integer $M$ and $q\in(1,M+1]$, let $\mathcal U_q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\ldots$ with each $x_i\in\{0,1,\ldots, M\}$ such that \[ x=\frac{x_1}{q}+\frac{x_2}{q^2}+\frac{x_3}{q^3}+\cdots. \] Denote by $\mathbf U_q$ the set of corresponding sequences of all points in $\mathcal U_q$. It is well-known that the function $H: q\mapsto h(\mathbf U_q)$ is a Devil's staircase, where $h(\mathbf U_q)$ denotes the topological entropy of $\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \[ \mathcal B:=\{q\in(1,M+1]: H(p)\ne H(q)\textrm{ for any }p\ne q\}. \] Note that $\mathcal B$ is contained in the set $\mathcal{U}^R$ of bases $q\in(1,M+1]$ such that $1\in\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\mathcal B\backslash\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\mathcal B\backslash\mathcal{U}^R$ is $\frac{\log 2}{3\log \lambda^*}\approx 0.368699$, where $\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []